在傳統的氧化鋁工業生產中,拜耳法冶煉過程依賴龐大的回轉窯或流化床,通過燃燒燃料進行高溫焙燒,這一環節不僅能耗巨大、設備占地面積廣,還伴隨著嚴重的碳排放問題。然而,隨著工業微波技術的崛起,這一傳統格局正被悄然打破,為氧化鋁工業的綠色升級注入了革命性的動力。
近年來,研究人員通過對傳統方法進行組合與創新,提出來一些制備納米氧化鋁的新型工藝。例如,基于溶膠-凝膠法的溶膠-凝膠-自蔓延法、溶膠凝膠-靜電紡絲法和無水解溶膠凝膠法。
傳統的烘干方式,如回轉窯或閃蒸干燥,主要依賴熱風對流或熱傳導,由表及里地進行加熱。這種方式存在熱效率低、能耗大、設備占地面積廣、干燥均勻性差等固有瓶頸,容易導致產品局部過干或結塊,影響最終氧化鋁的活性和粒度分布。
在高端粉體材料領域,氧化鋁(球鋁)以其優異的導熱性、絕緣性和填充性能,在導熱膠、覆銅板等電子材料中扮演著關鍵角色。然而,對其微觀形貌(完美的球形)和極低成品含水率(如0.03%以下)的嚴苛要求,使得傳統烘干技術面臨巨大挑戰。微波烘干技術的出現,為這一難題提供了堪稱完美的解決方案,以其獨特優勢正引領著球鋁干燥工藝的革新。
部分IGBT使用氮化鋁陶瓷基板,自動駕駛芯片、激光雷達、LED大燈、顯示屏幕與控制芯片等部件對導熱也有較大需求。對于導熱系數要求很高的部位,以球形氧化鋁導熱填料為主,一般場合也會用一些低價位填料。
在高端新材料、精細化工等領域,氧化鋁-D50球鋁粉體因其優異的絕緣性、導熱性和填充性能而備受青睞。然而,其烘干環節一直是生產工藝中的難點。